没有找到合适的产品?
联系客服协助选型:023-68661681
提供3000多款全球软件/控件产品
针对软件研发的各个阶段提供专业培训与技术咨询
根据客户需求提供定制化的软件开发服务
全球知名设计软件,显著提升设计质量
打造以经营为中心,实现生产过程透明化管理
帮助企业合理产能分配,提高资源利用率
快速打造数字化生产线,实现全流程追溯
生产过程精准追溯,满足企业合规要求
以六西格玛为理论基础,实现产品质量全数字化管理
通过大屏电子看板,实现车间透明化管理
对设备进行全生命周期管理,提高设备综合利用率
实现设备数据的实时采集与监控
利用数字化技术提升油气勘探的效率和成功率
钻井计划优化、实时监控和风险评估
提供业务洞察与决策支持实现数据驱动决策
转帖|行业资讯|编辑:郝浩|2017-03-24 14:35:39.000|阅读 163 次
概述:Python 是一款强大的工具语言,被广泛应用在大数据和机器学习之中。以下推荐了 5 个 Python 库,帮你疏通机器学习之路。
# 界面/图表报表/文档/IDE等千款热门软控件火热销售中 >>
机器学习令人兴奋,但实际操作却很困难也很复杂。它涉及到很多手动操作,如集合工作流和管道,设置数据源,以及在内部部署与云部署的资源之间切换等。
Python 是一款强大的工具语言,被广泛应用在大数据和机器学习之中。以下推荐了 5 个 Python 库,帮你疏通机器学习之路。
PyWren 允许你将基于 Python 的科学计算工作负载作为多个 AWS Lambda 函数来运行。The New Stack 上一份对该项目的描述是,使用 AWS Lamba 作为强大的并行处理系统,处理可以切分为多个小任务的项目,从而不用占据大量的内存或存储空间。
此项目有个缺点是 lambda 函数运行不能超过 300 秒。但如果是一份只需几分钟就能完成的工作,并且要在数据集中运行上千次,那 PyWren 会是不错的选择,它能在一定程度上将用户硬件上无法运行的工作平行化至云端。
Google 的 TensorFlow 框架在发布了 1.0 版本之后进入辉煌时期,这时人们要问了:如何才能在不使用 TensorFlow 本身的情况下,使用在 TensorFlow 上训练的模型?
Tfdeploy 能给你答案。它将经过训练的 TensorFlow 模型导出为“简单的基于 NumPy 的可调用对象”,即该模型可以在 Python 中使用,并以 Tfdeploy 和 NumPy math-and-stats 库为唯一的依赖关系。大多数可以在 TensorFlow 中执行的操作也可以在 Tfdeploy 中执行,你可以通过标准的 Python metaphors 来扩展库的行为(如,重载类)。
编写批量作业只是处理数据堆的一部分,你还需要将所有作业串起来生成类似工作流和管道的东西。
Luigi 由 Spotify 创建,用于“解决与长期运行成批处理作业有关的管道问题”。开发者可以通过 Luigi 采用多个不同且不相关的数据处理任务,如,Hive 查询,Java 中的 Hadoop 任务,Scala 中的 Spark 任务,从数据库转储 table 等,还可以创建一个端到端运行它们的工作流。
对任务的整个描述以及依存性被打造为 Python 模块,而不是作为 XML 配置文件或其他数据格式创建,因此可以集成到其他以 Python 为中心的项目中。
如果你使用 Kubernetes 作为机器学习作业的编排系统,那么你会祈祷 Kubernetes 产生的问题不要比解决的问题还多。Kubelib 为 Kubernetes 提供了一组 Pythonic 接口,最初是为了协助 Jenkins 脚本工作。但是它可以在没有 Jenkins 的情况下使用,它可以处理 kubectl CLI 或 Kubernetes API 暴露的一切服务。
PyTorch 是一个Torch7团队开源的 Python 优先的深度学习框架,提供两个高级功能:强大的 GPU 加速 Tensor 计算(类似 numpy),构建基于 tape 的自动升级系统上的深度神经网络。你可以重用你喜欢的 python 包,如 numpy、scipy 和 Cython ,在需要时扩展 PyTorch。
通常使用 PyTorch 是将其作为 numpy 的替代品,以使用强大的 GPU 能力,或作为一个深度学习研究平台,提供最大的灵活性和速度。
本文来自开源中国
本站文章除注明转载外,均为本站原创或翻译。欢迎任何形式的转载,但请务必注明出处、不得修改原文相关链接,如果存在内容上的异议请邮件反馈至chenjj@evget.com
在大型技术项目中,工具链割裂、协作低效、安全失控是架构师与开发团队的共性痛点。Sparx Systems的Enterprise Architect(Sparx EA)终极版以四大核心技术能力直击这些挑战,成为企业级建模与系统工程的战略级解决方案。本文将深度解析其技术竞争力内核。
在自动化测试过程中,快速识别问题并高效修复错误是确保软件质量的关键。然而,传统的测试方法往往依赖手动检查日志,导致效率低下,甚至遗漏关键问题。TestComplete提供了强大的测试报告与分析功能,帮助团队快速定位错误、优化测试流程,并提升整体开发效率。本文将深入探讨如何利用TestComplete的报告和分析功能,让您的自动化测试更加高效、精准。
关于不同受众的3D PDF工具说明,Tech Soft 3D为两类不同的受众提供多种3D PDF工具:应用开发者和终端用户。 1、开发者工具(例如我们的HOOPS工具包)适用于需要软件开发工具包以创建专业应用程序的用户。 2、终端用户应用包括Theorem、SpinFire等,这些工具允许用户更动态地与三维数据交互。
Java 开发团队常常面临测试覆盖率与开发效率的双重挑战。通过引入 AI 与自动化工具,团队不仅能减轻静态分析与单元测试的负担,还能在保障代码质量的同时提升开发节奏。本文以 Parasoft Jtest 为案例,深入探讨了当前主流的 AI 测试实践如何帮助企业实现代码级测试的优化与落地。
服务电话
重庆/ 023-68661681
华东/ 13452821722
华南/ 18100878085
华北/ 17347785263
客户支持
技术支持咨询服务
服务热线:400-700-1020
邮箱:sales@evget.com
关注我们
地址 : 重庆市九龙坡区火炬大道69号6幢
慧都科技 版权所有 Copyright 2003-
2025 渝ICP备12000582号-13 渝公网安备
50010702500608号